Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android


Treatment of the injured upper extremity and the appreciation of the severe disability that could result from poor management was the major driving force in the evolution of upper extremity and hand surgery as independent and distinct specialties.

A primary theme was the recognition that many injuries to the upper extremity are combined injuries and that appropriate treatment could best be delivered by someone trained in management of both bone and soft tissue injuries. Today, the successful approach to the treatment of many upper extremity injuries requires microsurgical skills to deal with soft tissue coverage, nerve repair, and revascularization, in addition to fracture care.


One useful way to classify injuries to the upper extremity relates to the amount of energy involved in their generation. Low-energy forces typically cause simple injuries, while high-energy forces lead to complex injuries involving soft tissue and bones that are often associated with joint, neurologic, or vascular involvement. A classic example is a distal radius fracture that typically occurs in two age groups with different mechanisms related to the transfer of energy. A low-energy distal radius fracture typically occurs in an elderly osteopenic woman where the mechanism was a simple fall on an outstretched hand. This usually results in a simple fracture pattern that may best be treated via closed reduction and splinting. A high-energy distal radius fracture, on the other hand, typically occurs in a young healthy and fit patient resulting from a high-speed motor vehicle crash or fall from a significant height. These injuries are associated with swelling of soft tissue, severely comminuted intra-articular shear-type fractures, and several associated potential complications. At first glimpse both scenarios share the diagnosis of “distal radius fracture” and may even seem similar, but it is extremely important to recognize that these two are very different entities. While the low-energy distal radius fracture is simply treated as noted above, the high-energy counterpart should be closely monitored for swelling that may lead to an “acute carpal tunnel syndrome” with subsequent injury to the median nerve, breakdown of soft tissue, and vascular insufficiency. Furthermore, high-energy distal radius fractures will often require surgical treatment including open reduction and internal fixation to restore articular congruency.

Similarly, soft tissue lacerations can be classified as high or low energy depending on the causative agent. A laceration from a sharp kitchen knife to the forearm is to be distinguished from a laceration to the same region caused by a high-speed electrical saw. While they may initially appear similar on presentation in the emergency department (ED), they are quite different. The former may be irrigated and sutured primarily, while the latter requires careful observation due to the late effects of thermal and kinetic energy causing burns of the skin and soft tissue. Skin breakdown with necrosis of the wound edges is typically seen with high-energy lacerations, and recurrent debridements in ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.