++
Careful written and photographic documentation of injuries and their repair may be useful in counseling patients and in interacting with the legal system, which may be necessary. Most soft tissue wounds are then managed at the bedside using local anesthesia.
++
After local anesthesia is achieved, wounds are debrided and cleansed. Contamination and foreign material are sources of infection in deep tissues, and granules of foreign material embedded in the skin can cause permanent tattooing. Copious saline irrigation is commonly performed, although one group found that irrigation does not significantly reduce the risk of infection or improve the cosmetic outcome in facial wounds that are superficial, minimally contaminated, and less than 6 hours old.15 They suggest that irrigation may damage tissue and that such wounds are amenable to cleansing with saline and gauze.
++
Debridement is limited to frankly necrotic soft tissue. Given the abundant vascularity of the face, tissue that appears compromised, but not necrotic, is likely to survive.
++
The following general principles may then be applied to the closure of soft tissue wounds of the face. First, with adequate debridement and irrigation, the robust vascularity of the face supports primary closure of almost all facial wounds. With proper antimicrobial therapy, the incidence of secondary infection is low, even in the setting of bite wounds less than 24 hours old. Closure of facial wounds by secondary intention typically results in unacceptable scars. Second, wounds should be closed in a layered fashion. Mucosa is closed with interrupted absorbable sutures, whereas muscle should be reapproximated with braided, absorbable suture. Failure to reapproximate muscular layers can result in loss of function and facial deformity, as well as depressed and excessively wide scars. Skin closure is accomplished with interrupted absorbable polyglycan 4-0 dermal stitches (except in the thin skin of the nose, eyelids, and ear) followed by 5-0, or 6-0 monofilament sutures in the epidermis. In small children, where suture removal presents an additional challenge, 6-0 fast absorbing gut may be used. Every attempt is made to achieve eversion of wound edges. Where tissue is lost via avulsion, undermining the skin up to 2–4 cm from the wound edge will often allow primary closure. Undermining is usually accomplished in the subcutaneous plane, although the forehead and scalp are undermined in the subgaleal plane, and nasal skin is undermined in the submuscular plane. In larger avulsions, local or regional flaps may be needed. Alternatively, a skin graft can be used in the acute setting, and definitive closure can be achieved in the future when the full range of reconstructive techniques may be more available. Facial sutures should be removed early, often at 4–5 days and certainly within 1 week, in order to prevent “railroad track” scars.
++
The mucosa, the orbicularis, and the skin are closed in discrete layers. The primary aim is reapproximation of the white roll and the vermillion margin, as well as the wet line and the orbicularis. Great care is taken to precisely reapproximate the vermillion-cutaneous junction, and the author commonly begins lip closures with a single interrupted skin suture at the vermillion-cutaneous border followed by a muscular stitch that also contributes to precise alignment. Next, the mucosa is closed with interrupted absorbable sutures. The remainder of the muscle and skin is then closed.
++
Multiple algorithms exist for the reconstruction of full-thickness lip defects, and these are handled in the same fashion as lip reconstruction after tumor resection.16
++
Similar to lip repair, eyelid closure involves layered closure of the lamellae, as well as careful reconstruction of the lateral supporting structures, in this case the canthal tendons. The tarsus is reapproximated with interrupted absorbable 6-0 stitches; however, the levator aponeurosis must be repaired to prevent lid ptosis. The grey line is reapproximated with 6-0 silk suture. The conjunctiva may be closed with interrupted, absorbable sutures, though it is not always necessary. Finally, the skin and orbicularis may be closed as a single flap.
++
The canthal tendons must be repaired if torn or if displaced from the orbital rims. There is a common misconception that the lateral canthus attaches more superiorly than the medial canthus; however, recent analyses have revealed that these attachments are actually along a horizontal line.17 Repair of the MCT is covered below in a discussion of fractures of the nasal orbital ethmoid complex. The medial canthal ligament is repaired by fixing it to the lacrimal bone, usually with a transnasal suture or wire.
++
The principles of augmentive rhinoplasty and of nasal reconstruction of skin cancer defects are utilized in repairing soft tissue trauma of the nose. Superficial lacerations can often be closed primarily. The relatively inelastic nasal skin is, however, prone to scar contracture, trapdoor deformity, and scar depression. Therefore, wound edges are everted via submuscular undermining, deep sutures are used to reapproximate wound margins, and skin closure is with vertical mattress sutures. Small areas (<1 cm) of skin loss located in concavities of the nasal surface (such as the nasofacial or alar facial sulci) can be left to granulate, as these tend to heal nicely by secondary intention.18 Lacerated cartilages should be reapproximated with interrupted 4-0 polydioxanone sutures. The alar rims, especially in the soft triangles, are especially prone to notching as a result of scar contracture. Here, eversion of wound edges is essential, and skin is supported with underlying cartilage batten grafts harvested from the septum or auricular conchae.
++
For extensive tissue loss, the principles of cancer reconstruction are applied. These involve reconstruction of all affected layers, including mucosa, cartilage framework and skin, utilizing a variety of available grafts or flaps, including free tissue transfer when indicated.18
++
The septum must be examined. Hematomas must be aspirated or drained via incision and drainage to prevent cartilage loss and a late saddle nose deformity. A quilting stitch or a nasal pack is placed in order to coapt the cartilage and mucoperichondrium to prevent reaccumulation.
++
As with the nose, ear skin is inelastic and supported by a cartilaginous framework. Lacerations of skin and cartilage must be meticulously repaired. Auricular cartilage is directly repaired and/or the anterior and posterior perichondrium are reapproximated, and, where the cartilaginous support is absent, supporting cartilaginous grafts may be introduced and wound edges everted in order to prevent notching. Analogous to the septal hematoma, an auricular hematoma separates the skin from the underlying cartilage and must be evacuated. A hematoma may be removed through needle aspiration or a small stab incision, and a bolster is then sewn to the ear.
++
Significant tissue loss requires grafting of cartilage, often taken from the contralateral concha, and soft tissue coverage. For large defects, pedicled, staged soft tissue flaps provide coverage. Postauricular skin flaps cover the helix and antihelix well, and the temporoparietal fascial flap covered by a skin graft is useful for larger defects.
++
For complete or near-complete avulsion, primary reattachment of the auricle, two-stage postauricular skin flap coverage of the auricle, and microvascular reanastomosis may be used, though simply sewing the avulsed segment into place is unlikely to succeed. In this case, the cartilage may be denuded of all skin and perichondrium and buried in a subcutaneous pocket for later reconstruction. Complete reconstruction using carved rib cartilage may be used as well.
++
Injuries to the cheek involving deep tissue must be explored for possible trauma to the parotid gland and duct. Laceration of the gland itself is often not reparable, although an attempt at closure of the parotidomasseteric fascia may be made. Injury to the parotid gland may result in a salivary-cutaneous fistula or sialocele.
++
It is important to assess for a possible injury to Stensen’s duct. Treatment options for ductal injuries include primary anastomosis, creation of an oral fistula, ductal ligation, and conservative nonoperative measures. Repair requires cannulation and microsurgical anastomosis. Some authors favor conservative management.19,20 When the duct is not repaired, antisialogogues are useful to reduce salivary output and pain.21
++
Salivary cutaneous fistula and sialoceles may result from injury to the gland, an unrecognized ductal laceration, or intentionally conservative management of parotid injury. Sialoceles should be aspirated in serial fashion, and a pressure dressing may be applied. Most will resolve, though more aggressive measures may be required.
++
Injury to branches of the facial nerve often accompanies injury to the parotid gland. If evidence of paralysis in one or more regions of the seventh nerve is found on physical examination, an attempt at primary microsurgical reanastomosis should be made at the time of initial wound repair.
++
If facial lacerations exist, they may provide adequate exposure with minimal extension. Otherwise, the principles of soft tissue approaches include minimizing (and avoiding) incisions in facial skin and protecting neurovascular structures while achieving maximal exposure.
++
The coronal approach exposes the entire upper face down to the nasal bones as well as the anterior calvarium, lateral orbital rims, and zygomas.22,23 The scalp is incised in serpentine, geometric, or gently curved (Soutar) fashion from the root of one auricular helix to the other. A scalp flap is raised anteriorly in either the subgaleal or the subperiosteal plane between the temporal lines. If a pericranial flap will be harvested, the subgaleal plane is often followed, leaving a healthy layer of loose areolar tissue down on the pericranium. Alternatively, the pericranium can be raised with the scalp and harvested from the scalp flap secondarily.
++
Extreme care is required to avoid injury to the temporal branches of the facial nerve. Dissection over the temporal fat pads can be performed either just over the deep temporal fascia, hugging the fascia to avoid nerve injury, or, to be safer, the deep fascia can be incised where it divides into two layers, and the dissection can be continued inferiorly just over the fat (Figs. 21-1 and 21-8A). The dissection can then be carried forward to the superior and lateral orbital rims and inferiorly to the zygomatic arches. Supratrochlear and supraorbital neurovascular bundles are carefully protected.
++
Scalp closure is achieved in layers. A wide scar is prevented by taking particular care to reapproximate the galea. The skin may be sutured or stapled.
++
Exposure of the midface is obtained through either a sublabial or a midface degloving approach (Fig. 21-8B). After an incision in the superior oral vestibule is made perpendicular to mucosa and then deepened perpendicular to bone, a subperiosteal dissection over the face of the maxilla is performed, using care to avoid the infraorbital nerve.
++
++
When greater exposure is required, a bilateral sublabial approach may be converted to a midface degloving approach.24 Subperiosteal dissection is extended into the floor of the piriform aperture and into the nose. The nasal vestibule is incised circumferentially, connecting the nasal floor, membranous septum, and intercartilagenous region. Thus, the lower one-third of the nose is raised with the flap.
++
The orbits are directly approached through modified brow and blepharoplasty incisions.22,24 Although the brow incision for access to the lateral superior orbit and lateral orbital rim has been advocated for years, many surgeons have abandoned it in favor of the upper lid blepharoplasty incision.22 Lower lid blepharoplasty incisions provide the best direct exposure of the orbital floor and inferior, medial, and lateral walls. In the lower lid, a subciliary skin incision can provide access to the inferior rim and floor, but it does produce a facial scar (even though fine) and does carry greater risk of lid retraction than does an approach through the conjunctiva. The transconjunctival approach may include a lateral extension, which requires a canthotomy and inferior cantholysis. In this case, it is initiated with the lateral incision and canthotomy. Otherwise, only the conjunctival incision is used. The surgeon develops either a pre or postseptal plane and carries the dissection to the inferior rim (Fig. 21-8C). The conjunctiva may be left open or is closed with a 6-0 fast absorbing gut suture.
++
The inferior oral vestibular approach exposes the mandibular symphysis and body. Subperiosteal dissection exposes the mental nerves and the anterior two thirds of the mandible. Closure is water-tight, and the soft tissue of the mentum must be resuspended from the skeleton. An incision along the anterior border of the ramus is used to expose the vertical mandibular structures, including the coronoid process, the sigmoid notch, and the condylar neck. This ramus approach combined with a transbuccal stab incision is usually adequate for reduction of a subcondylar, ramus, or angle fracture.
++
Occasionally, the mandible may be approached through external skin incisions. These are positioned in appropriate skin creases (relaxed skin tension lines), and care is taken to avoid branches of the facial nerve.
+++
Fundamentals of Rigid Fixation
++
Skeletal support for the soft tissue and visceral structures of the face must be reconstituted. The surgeon reduces and fixates fractured skeletal elements in order to restore proper form and function and to optimize bony healing.22,25,26,27 Interfragmentary motion prevents the formation of the delicate vascular support of growing bone, thereby preventing osteoblastic bone formation and the development of a stable population of osteocytes. Rigid fixation not only maintains alignment of bone segments, but also eliminates motion in the fracture gap.25 Lack of adequate fixation increases the chance of device failure and nonunion as well as wound infection and osteomyelitis.22,26,27
++
Traditional fixation for most of the 20th century was performed by wiring the teeth in occlusion using maxillomandibular fixation (MMF), frequently in combination with interosseous wiring. In the 1970s and 1980s, rigid fixation of the facial skeleton with plates and screws began to gain popularity, and these techniques now predominate.
++
Rigid fixation, as the name suggests, involves properly applying fixation devices to bone so that the dynamic forces of distraction in function are overcome. When properly adapted to bone using screws, a plate provides immobilization and strong, rigid splinting. Multiple plating strategies have been developed. Compression plates take advantage of eccentric, ramped screw holes that force the turning screw to slide down the shoulders of the screw hole, thereby bringing a bone fragment with it and compressing it against an opposing bone fragment (Fig. 21-9).22 Recently however, compression plates have fallen out of favor, not because they are ineffective, but as a result of comparably high success rates with the technically easier and more tolerant miniplate approaches. Miniplate technology reliably achieves complete healing with comparable success rates.28
++
++
The newer “locking plates” add a margin of safety by fixing the screw heads to the plate itself. The heads of locking screws thread-lock to the plate hole, and functions more like an external fixator. Therefore, it requires less precision in adapting the plate.29
++
Compression fixation is also achieved with lag screws—either alone or in combination with a plate (Fig. 21-10). Lag screws can be used whenever bone fragments overlap or meet in a way that allows fixation of the screw in the second cortex.30
++
++
Titanium is currently the metal of choice for nearly all metal craniofacial plates. Titanium does not corrode and does not interfere with imaging, and it seems to “integrate” with bone, with osteocytes adhering directly to the material without a fibrous interface.31
++
The goals of treatment are restoration of form, manifested by normal occlusion, and restoration of function, or the capacity to bear the load of mastication. Although many fractures could heal solely through the application of MMF, there is increased risk of malunion due to less dependability of maintenance of position and increased risk of nonunion due to lack of adequate stabilization. Therefore, most fractures are treated with open reduction and internal fixation (ORIF) so that healing is accelerated and patient comfort and safety are improved. Interestingly, there is even a recent trend toward completely avoiding the application of arch bars and proceeding directly to rigid fixation of the fracture fragments, though this approach remains quite controversial. In a recent review by Archer et al. (Presented at the 11th International Symposium of Facial Plastic Surgery, May 27–31, 2014) it was found that for isolated fractures of the mandibular angle, avoiding intraoperative MMF did not increase complications; however, this was not the case with multiple fractures. It is certainly agreed that there are benefits of avoiding postoperative MMF, particularly in the patient with a traumatic brain injury or one who is seizure prone. Still, most maxillofacial repair is started with application of arch bars and wires. In attempts to save time and avoid injury to the surgeon, arch bars that can be applied with screws instead of wires have been developed. These, however, like dedicated MMF eyelet screws, increase the risk of injury to the root of teeth.
++
As noted above, the goal of rigid fixation is to overcome the forces that will tend to distract the fracture fragments. To accomplish this, Champy et al.32 proposed “ideal lines” of osteosynthesis, along which miniplates should be placed (Fig. 21-11). With tension at the superior border and compressive forces at the inferior border of symphysis, parasymphsysis, and body fractures, Champy demonstrated the mechanical advantage of placing a “tension band” plate across the superior border. For fractures of the symphysis and parasymphysis, Champy proposed a second plate, placed inferiorly to overcome any rotational forces. Champy’s technique also suggests that a single miniplate along the ideal line will stabilize a fracture of the body or angle of the mandible, though several groups have demonstrated better outcomes when two miniplates are fixed at the angle.33,34 Increasingly sophisticated techniques, including computer modeling, have demonstrated the differential loads borne by discrete areas of the mandible relative to the placement of fracture lines and bite force.35
++
++
Management of condylar and subcondylar fractures remains controversial. Although it is widely agreed that fractures of the condyle and the subcondylar region may cause a significant disturbance of masticatory movement, the patient’s ability to adapt to such a disturbance may be great.36 Furthermore, there has been great concern about the risk of injury to the facial nerve when open reduction of these fractures is performed. This has led to decreased use of open reduction, a choice made more acceptable by the tolerable results seen with closed treatment. It should be noted, however, that closed approaches do not reduce these fractures, so that the term “closed reduction” should be removed from the lexicon. Instead, it should be called “closed management,” with the realization that management of the occlusion is a form of “forced adaptation” of the occlusion to a less than ideal anatomic position of the underlying bone. Furthermore, despite the development of a “functional occlusion” in most cases, this result is achieved at the expense of physiologic adaptation, including altered kinematics of the jaw while chewing37 and possible foreshortening of the mandible on the fractured side. This may produce significant facial asymmetry at rest and with mouth opening.36,38,39 Moreover, some patients may not be capable of adaptation, and altered jaw movement may result in chronic pain or trismus.36,37
++
Recently, a randomized, prospective, multiinstitutional study in Europe has demonstrated a fairly clear advantage to open reduction of subcondylar fractures of the mandible. It is an excellent study, and the reader is referred to the original publication for further elaboration.40
++
The introduction of the endoscope into the armamentarium of the maxillofacial trauma surgeon may minimize the main concern associated with open reduction of subcondylar fractures of the mandible.39,41 The endoscope allows for an intraoral approach and has been shown to reduce the risk of injury to the facial nerve and to eliminate facial scarring while effecting excellent results in selected patients39,41,42 (Fig. 21-12).
++
++
Note that when a segment of mandible is severely injured with comminution or bone loss, miniplate fixation cannot provide adequate stability. A mandibular reconstruction plate is fixated to adequate proximal and distal bone stock, incorporating the comminuted fragments between.11,22 The reconstruction plate is a large plate fixed with multiple fixation points, so that it can provide a “replacement” for bone that is either missing or unable to provide support. Comminuted fragments may be fixed to one another with miniplates or wires or lagged to the reconstruction plate. Note, however, that not only is bending a heavy reconstruction plate more difficult than bending a miniplate, greater precision in adapting reconstruction plates is required to avoid creating an uncorrectable malocclusion.
++
The forces acting across midface fractures are far less than those found in mandibular fractures. Occlusal forces impart only compressive forces to the medial and lateral buttress, and the masseter muscle imparts only mild-to-moderate amounts of shearing and rotation to a fractured zygoma.22 Thus, repair considerations focus less on the fixation strategy than on the realignment of skeletal elements so that the buttresses are restored and soft tissue and visceral structures are properly supported. In general, single miniplate fixation of buttresses and microplate fixation of intervening segments are sufficient.
++
Repair of lower midface or Le Fort I fractures involves exposure of the bones, disimpaction of the midface, realignment of fracture segments, and plating of the vertical buttresses. Primary principles are the restoration of occlusion and vertical facial height. After reduction, the bones are secured in position with small plates and screws, and MMF is then released. Comminution complicates repair, and gaps should be spanned by bone grafts from the calvarium, a rib, or the iliac crest.43
++
Upper midface (middle third) fractures include buttress fractures in the Le Fort II and III pattern, as well as fractures through the orbital walls and zygomatic articulations. The maxillary vestibular approach is again utilized to approach the upper midface in combination with the transconjunctival approach to the orbital rims and floor, and the buttresses are reduced and plated. Exposure of the nasal root may sometimes be required, as well.
++
The midface may also transmit force to the deeper skeletal elements of the orbit. Therefore, after the lateral buttress and orbital rims are approached and repaired, the orbital walls, especially the floor, are explored when necessary, and reconstructed with an appropriate alloplastic or autogenous material.
++
Le Fort II and III fractures imply disruption of the nasal pyramid, also. The medial buttress is plated superiorly, reestablishing the frontal process of the maxilla and the medial orbital rim. A strong tendency for posterior rotation of the lower facial skeleton, hinged at the nasal root, is an indication for plating nasal fractures, and stabilizing the nasal root to the frontal bone. Defects in the nasal dorsum may be repaired with a free bone graft cantilevered from the glabella.22
++
Most recently, endoscopic repair of the orbital floor and fractures of the medial wall has been described. The floor is approached through the maxillary vestibular incision and an anterior maxillotomy. This approach avoids possible complications of eyelid incisions and may afford better visualization of the posterior orbital floor. The orbital contents are reduced and the floor is grafted44 (Fig. 21-13). There is a risk, however, of inadvertently pushing bone fragments into the orbit from below. Endoscopic approaches to medial orbital fractures has been recently advocated, as well.45,46 These are performed through the nose by exposing the fractures through the ethmoid sinus. The use of intraoperative 3D navigation and computer-aided design along with stereolithographic modeling are allowing for more dependable results in even the most complex orbital and craniomaxillofacial reconstructions.47,48
++
++
Forces directed at the nasal root may lead to telescoping inward of the strong nasal bone as the weaker laminae of the medial orbital walls give way, allowing the lacrimal bones to splay, thereby causing telecanthus (pseudohypertelorism). This is the NOE fracture. For the purpose of repair, NOE fractures are categorized as types I, II, and III, depending on the severity of disruption of the medial canthal ligaments47 (Fig. 21-14). Type I injuries result in a large central fragment with the medial canthal ligament attached to it. Fixing this fragment above and below will stabilize the ligament in place, as well. Type II fractures involve comminution of the central fragment without avulsion of the medial canthal ligament. Therefore, fixation should be augmented by transnasal fixation of the medial canthi with 28 gauge wire or 2-0 permanent suture.49 Type III injuries involve severe comminution of the NOE complex and avulsion of the medial canthus. In this case, the stumps of the canthi are approximated with a wire or permanent suture that crosses the nasal septum. Comminuted fragments are microplated or free bone grafts are used to span any gap between the medial buttress and the frontal bone.48 Severe NOE injuries often involve the lacrimal system, which should be probed and stented.
++
++
Fractures of the zygoma may be isolated to the arch or may involve the entire “ZMC” or “tripod.” Simple, nondisplaced fractures of the arch may be treated with observation. Displacement, however, may result in impingement of the temporalis muscle and dimpling of the cheek and should be reduced. Classically, this is accomplished via an external, Gilles incision in the temporal hair tuft or a sublabial incision. The fracture is reduced with an elevator. Most displaced ZMC fractures require ORIF. Nondisplaced fractures may be observed and, since many displaced fractures result only in cosmetic rather than functional deficits, patients may decline surgical repair. The central principle of repair is fracture realignment and fixation to reestablish the malar prominence. Although the zygomaticosphenoid (ZS) suture may be overlooked, it often provides the key information in determining final ZMC reduction. In addition, malalignment of the ZS articulation can result in a significant step-off in the lateral orbital wall and change in the orbital volume.
++
Upper facial fractures consist of either anterior cranial vault fractures, beyond the scope of this chapter, or frontal sinus fractures and the occasional superior orbital rim fracture. Frontal sinus fractures may be isolated, but often occur in the setting of upper midface fractures including Le Fort II and III and NOE injuries (Fig. 21-15). Multiple algorithms for the evaluation and repair of frontal sinus injuries are described.48,49 The principles of treatment include reestablishing an aesthetic anterior wall, ensuring the function of the frontal sinus should it be preserved, and safe management of a possible leak of CSF or exposure of the brain. Despite minor variations, the author agrees that the following distinctions determine the treatment needed to achieve those principles: (1) site of fracture—anterior versus posterior table; (2) degree of fracture displacement in either the anterior or the posterior wall; (3) the presence of fractures through the NFD; and (4) the presence of possible CSF leak.
++
++
Nondisplaced fractures of the anterior table can be observed. Anterior table fractures with significant depression or displacement should be repaired for cosmetic reasons, though the patient may opt for observation, utilizing delayed repair if a significant cosmetic deformity develops. Nondisplaced fractures of the posterior wall can be observed, also. Classically, displacement of posterior table fractures greater than the width of the posterior table itself has been used as an indication for exploration. The fear is communication between the frontal sinus and the intracranial compartment with an increased risk of a dural tear, CSF leak, and meningitis.50,51 In reality, any displacement can involve these risks. Obviously, increasing severity of a posterior table fracture including the presence of CSF leak mandates increasingly aggressive treatment. Fractures that traverse the floor of the sinus, especially medially, are likely to produce dysfunction of the NFD. Possible sequelae include frontal sinusitis, mucocele, and mucopyocele. Thus, involvement of the NFD in anterior or posterior table fractures requires more aggressive management. Minimal or questionable fractures through the sinus floor or posterior table can be further assessed via endoscopy for the presence of a CSF leak or obstruction of the NFD. Endoscopic techniques have increased the options when managing frontal sinus fractures. In particular, the use of obliteration when the NFD is damaged is no longer mandatory, since endoscopic sinus surgery may be used to manage delayed frontal sinus complications.52
++
Management options include observation, observation with medical management including antibiotic coverage, ORIF, sinus and duct obliteration, and sinus cranialization with duct obliteration.
++
In reality, upper face and midface fractures most commonly occur in combination as the result of high-speed motor vehicle crashes and may also present with lower facial injuries. Although such “pan-facial” fractures represent daunting challenges to the surgeon, the author and others espouse a “subunit” approach, by which complex fractures are repaired sequentially, thereby creating less complexity with each step of the repair.7,22 Classical approaches have been described as either “outside-in” or “inside out”; that is, from the periphery toward the center or vice versa. The author uses somewhat of a combined approach, first stabilizing the occlusion and then proceeding from the periphery toward the center (“outside-in”). The central midface is the most dependent portion of the craniofacial skeleton, providing the least in terms of native strength. Facial height and projection is, therefore, established through reconstitution of the mandible and the maxillary alveolus below and the cranial vault and upper midface above. The zygomatic arches relate the upper midface to the cranial base posteriorly. The vertical and horizontal buttresses are then reconstituted, and the upper and lower halves of the craniofacial skeleton are thus linked, with occlusion as the primary determinant of the final position. The central midface is addressed last, repairing telecanthus and restoring projection of the nasal root.
++
Proper reduction of the mandibular arch is key.11 If the mandible is incompletely reduced and then used to set the midfacial width, height, and projection via occlusal relationships, a wide and insufficiently projected midface results.
++
Finally, fractures of the frontal sinus and the upper midface, especially the NOE complex, may well result in disruption of the anterior skull base. Severely comminuted fractures of the frontal sinus, suspected dural lacerations, or impingement on the optic nerve suggest fractures of the anterior skull base. In this case, the author performs a subcranial approach to the anterior skull base. This involves temporary removal of the nasoglabellar complex and a variable extent of the superior orbital rims and frontal calvarium.53 This approach affords superior exposure of the frontal lobe dura and anterior skull base with minimal retraction of the brain. The medial canthi are also directly exposed, simplifying telecanthus repair.53